Web Featured Objects

Items that appear on the top level page under "Latest Additions."

Adapted to change
The rate of energy expenditure and acquisition are fundamental components of an animals' life history. Within mammals the otariids (sea lions and fur seals) exhibits energetically expensive life styles, which can be challenging in equatorial regions where resources are particularly limited and unpredictable. To better understand how this energetically expensive life history pattern functions in an energetically challenging equatorial system, we concurrently measured the field metabolic rate (FMR) and foraging behavior of lactating Galapagos sea lions (GSL) rearing pups and yearlings. Females with pups tended to forage to the north, diving deeper, epi and mesopelagically compared to females with yearlings, which foraged to the west and performed dives to the sea bed that were shallower. FMR did not differ between females with pups or yearlings but, increased significantly with % time spent at-sea. Females with yearlings had higher water influx, suggesting greater food intake, but had lower body condition. The FMR (4.08 +/- 0.6 W/kg) of GSL is the lowest measured for any otariid, but is consistent with Galapagos fur seals which also exhibit low FMR. The observation that these two otariids have reduced energy requirements is consistent with an adaptation to the reduced prey availability of the Galapagos marine environment compared to other more productive marine systems., In Press
Multiple-stage decisions in a marine central-place forager
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multistage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies. © 2016 The Authors., Cited By :1, Export Date: 27 May 2016, Article
Surprising episodic recruitment and growth of Antarctic sponges
Sponges are the most conspicuous component of the Antarctic benthic ecosystem, a system under stress both from climate change and fishing activities. Observations over four decades are compiled and reveal extremely episodic sponge recruitment and growth. Recruitment occurred under different oceanographic conditions on both sides of McMurdo Sound. Most of the sponges appear to have recruited in the late 1990s–2000. Observations from 2000 to 2010 follow thirty years of relative stasis with very little sponge recruitment or growth followed by a general pattern of recruitment by some forty species of sponges. That there was almost no recruitment observed on natural substrata emphasizes the contrast between potential and realized recruitment. This unique data set was derived from a region noted for physical stasis, but the episodic ecological phenomena highlight the importance of rare events. Against a background of intermittent food resources and the low metabolic costs of stasis, understanding the causes of irregular larval supply, dispersal processes, recruitment success and survivorship becomes critical to predicting ecosystem dynamics and resilience in response to increasing environmental change. Our time-series emphasizes that long-term data collection is essential for meaningful forecasts about environmental change in the unique benthic ecosystems of the Antarctic shelf.
Trophic cascades on the edge
Despite widespread degradation, some coastal ecosystems display remarkable resilience. For seagrasses, a century-old paradigm has implicated macroalgal blooms stimulated by anthropogenic nutrient, loading as a primary driver of seagrass decline, yet relatively little attention has been given to drivers of seagrass resilience. In Elkhorn Slough, CA, an estuarine system characterized by extreme anthropogenic nutrient loading and macroalgal (Ulva spp.) blooms, seagrass (Zostera marina) beds have recovered concurrent with colonization of the estuary by top predators, sea otters (Enhydra lutris). Here, we follow up on the results of a previous experiment at the seagrass interior, showing how sea otters can generate a trophic cascade that promotes seagrass. We conducted an experiment and constructed structural equation models to determine how sea otters, through a trophic cascade, might affect the edge of seagrass beds where expansion occurs. We found that at the edge, sea otters promoted both seagrass and ephemeral macroalgae, with the latter contributing beneficial grazers to the seagrass. The surprising results that sea otters promote two potentially competing vegetation types, and a grazer assemblage at their boundary provides a mechanism by which seagrasses can expand in eutrophic environments, and contributes to a growing body of literature demonstrating that ephemeral macroalgae are not always negatively associated with seagrass. Our results highlight the potential for top predator recovery to enhance ecosystem resilience to anthropogenic alterations through several cascading mechanisms., Early online view