Search results
(1 - 8 of 8)
- Title
- Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion
- Author
- Villegas-Amtmann, McDonald, Páez-Rosas, Aurioles-Gamboa, Costa
- Title
- Heart rate regulation in diving sea lions: The vagus nerve rules
- Description
- Export Date: 8 May 2017, Review, Recent publications have emphasized the potential generation of morbid cardiac arrhythmias secondary to autonomic conflict in diving marine mammals. Such conflict, as typified by cardiovascular responses to cold water immersion in humans, has been proposed to result from exercise-related activation of cardiac sympathetic fibers to increase heart rate, combined with depth-related changes in parasympathetic tone to decrease heart rate. After reviewing the marine mammal literature and evaluating heart rate profiles of diving California sea lions (Zalophus californianus), we present an alternative interpretation of heart rate regulation that de-emphasizes the concept of autonomic conflict and the risk of morbid arrhythmias in marine mammals. We hypothesize that: (1) both the sympathetic cardiac accelerator fibers and the peripheral sympathetic vasomotor fibers are activated during dives even without exercise, and their activities are elevated at the lowest heart rates in a dive when vasoconstriction is maximal, (2) in diving animals, parasympathetic cardiac tone via the vagus nerve dominates over sympathetic cardiac tone during all phases of the dive, thus producing the bradycardia, (3) adjustment in vagal activity, which may be affected by many inputs, including exercise, is the primary regulator of heart rate and heart rate fluctuations during diving, and (4) heart beat fluctuations (benign arrhythmias) are common in marine mammals. Consistent with the literature and with these hypotheses, we believe that the generation of morbid arrhythmias because of exercise or stress during dives is unlikely in marine mammals
- Author
- Ponganis, McDonald, Tift, Williams
- Title
- Flipper stroke rate and venous oxygen levels in free-ranging California sea lions
- Description
- The depletion rate of the blood oxygen store, development of hypoxemia, and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions (Zalophus californianus) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (> 100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15-25 m depth during these deeper dives. Venous hemoglobin saturation (SvO2) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between SvO2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that 1) the depletion of oxygen in the posterior vena cava in deep diving sea lions is not dependent on stroke effort, and 2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate.
- Author
- Tift, Hückstädt, McDonald, Thorson, Ponganis
- Title
- Cognitive control of heart rate in diving harbor porpoises
- Description
- Summary Marine mammals have adapted to forage while holding their breath in a suite of aquatic habitats from shallow rivers to deep oceans. The key to tolerate such extensive apnea is the dive response, which comprises bradycardia and peripheral vasoconstriction. Although initially considered an all-or-nothing reflex [1], numerous studies on freely diving marine mammals have revealed substantial dynamics of the dive response to meet the impending dive demands of depth, duration and exercise [2]. Such adjustments are not only autonomic responses, but are under acute cognitive control in pinnipeds [3] living amphibiously on land and in water. The fully aquatic cetaceans would similarly benefit from cognitive cardiovascular control; however, even though they have exercise-modulated diving bradycardia [2] and full voluntary control of their respiratory system to such extent that even mild anesthesia often leads to asphyxiation [4], cognitive cardiovascular control has never been demonstrated for this large group of marine mammals. To address this, we tested the hypothesis that porpoises modulate bradycardia according to anticipated dive duration. Two harbor porpoises, instrumented with ECG recording tags, were trained to perform 20- and 80-second stationary dives, during which they adjusted bradycardia to the anticipated duration, demonstrating cognitive control of their dive response.
- Author
- Elmegaard, Johnson, Madsen, McDonald
- Title
- Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion
- Description
- The rate of energy expenditure and acquisition are fundamental components of an animals' life history. Within mammals the otariids (sea lions and fur seals) exhibits energetically expensive life styles, which can be challenging in equatorial regions where resources are particularly limited and unpredictable. To better understand how this energetically expensive life history pattern functions in an energetically challenging equatorial system, we concurrently measured the field metabolic rate (FMR) and foraging behavior of lactating Galapagos sea lions (GSL) rearing pups and yearlings. Females with pups tended to forage to the north, diving deeper, epi and mesopelagically compared to females with yearlings, which foraged to the west and performed dives to the sea bed that were shallower. FMR did not differ between females with pups or yearlings but, increased significantly with % time spent at-sea. Females with yearlings had higher water influx, suggesting greater food intake, but had lower body condition. The FMR (4.08 +/- 0.6 W/kg) of GSL is the lowest measured for any otariid, but is consistent with Galapagos fur seals which also exhibit low FMR. The observation that these two otariids have reduced energy requirements is consistent with an adaptation to the reduced prey availability of the Galapagos marine environment compared to other more productive marine systems., In Press
- Author
- Villegas-Amtmann, McDonald, Paez-Rosas, Aurioles-Gamboa, Costa
- Date
- 2016-05-26T00:00:00Z
- Title
- A worldwide review of the food of nudibranch mollusks. Part II. The suborder dendronotacea,
- Description
- The prey items of 108 species representing all 10 families of the suborder Dendronotacea are presented in shortened form from the much larger electronic database accessible on the Web., Cited By (since 1996):9, , , Invertebrates
- Author
- McDonald, Nybakken
- Date
- 1999-01-01T00:00:00Z
- Title
- Effects of inhalational anesthesia on blood gases and pH in California sea lions
- Description
- Despite the widespread use of inhalational anesthesia with spontaneous ventilation in many studies of otariid pinnipeds, the effects and risks of anesthetic-induced respiratory depression on blood gas and pH regulation are unknown in these animals. During such anesthesia in California sea lions (Zalophus californianus), blood gas and pH analyses of opportunistic blood samples revealed routine hypercarbia (highest PCO2 = 128 mm Hg [17.1 kPa]), but adequate arterial oxygenation (PO2 > 100 mm Hg [13.3 kPa] on 100% inspiratory oxygen). Respiratory acidosis (lowest pH = 7.05) was limited by the increased buffering capacity of sea lion blood. A markedly widened alveolar-to-arterial PO2 difference was indicative of atelectasis and ventilation-perfusion mismatch in the lung secondary to hypoventilation during anesthesia. Despite the generally safe track record of this anesthetic regimen in the past, these findings demonstrate the value of high inspiratory O2 concentrations and the necessity of constant vigilance and caution. In order to avoid hypoxemia, we emphasize the importance of late extubation or at least maintenance of mask ventilation on O2 until anesthetic-induced respiratory depression is resolved. In this regard, whether for planned or emergency application, we also describe a simple, easily employed intubation technique with the Casper “zalophoscope” for sea lions.
- Author
- Ponganis, McDonald, Tift, Gonzalez, DaValle, Gliniecki, Stehman, Hauff, Ruddick, Howard
- Title
- Why do satellite transmitters on emperor penguins stop transmitting?
- Description
- Investigation of early transmission failure from animal-borne, satellite transmitters should reveal vital information about the reliability of the technology, and the risk of application to the animal. Current technology available to the investigator does not provide firm evidence for causes of transmitter blackout. We address the five most likely causes of satellite transmitter failure on 20 adult (10 male and 10 female) emperor penguins tagged near Cape Colbeck, Antarctica, and one near the Drygalski Ice Tongue, Western Ross Sea, during late summer, 2013. They are: 1. Technical failure of the transmitter, 2. Instrument breakage, 3. Instrument loss because of attachment failure, 4. Predation, and 5. Icing of the salt water detection switch. The longest record of 323 days suggests that prior losses were not due to power failure. Various possibilities of transmission blackout are discussed, and we speculate about the most likely causes of termination of transmissions. A loss of transmission from six tags at similar locations early in the deployments suggests predation. Later losses at random times and locations may be because of antenna breakage or attachment failure. Definite conclusions cannot be made because of the indirect assessment of transmission loss. We suggest some changes in deployment procedures to improve our ability to determine cause of satellite transmission termination in the future. Understanding causes of blackout is important both scientifically and ethically in terms of accurate data interpretation and balancing the benefits of scientific gain with the costs of animal disturbance.
- Author
- Kooyman, McDonald, Goetz