Search results
(1 - 4 of 4)
- Title
- Submarine Groundwater Discharge-Derived Nutrient Loads to San Francisco Bay: Implications to Future Ecosystem Changes
- Description
- Submarine groundwater discharge (SGD) was quantified at select sites in San Francisco Bay (SFB) from radium (223Ra and 224Ra) and radon (222Rn) activities measured in groundwater and surface water using simple mass balance box models. Based on these models, discharge rates in South and Central Bays were 0.3–7.4 m3 day−1 m−1. Although SGD fluxes at the two regions (Central and South Bays) of SFB were of the same order of magnitude, the dissolved inorganic nitrogen (DIN) species associated with SGD were different. In the South Bay, ammonium (NH 4 + ) concentrations in groundwater were three-fold higher than in open bay waters, and NH 4 + was the primary DIN form discharged by SGD. At the Central Bay site, the primary DIN form in groundwater and associated discharge was nitrate (NO 3 − ). The stable isotope signatures (δ15NNO3 and δ18ONO3) of NO 3 − in the South Bay groundwater and surface waters were both consistent with NO 3 − derived from NH 4 + that was isotopically enriched in 15N by NH 4 + volatilization. Based on the calculated SGD fluxes and groundwater nutrient concentrations, nutrient fluxes associated with SGD can account for up to 16 % of DIN and 22 % of DIP in South and Central Bays. The form of DIN contributed to surface waters from SGD may impact the ratio of NO 3 − to NH 4 + available to phytoplankton with implications to bay productivity, phytoplankton species distribution, and nutrient uptake rates. This assessment of nutrient delivery via groundwater discharge in SFB may provide vital information for future bay ecological wellbeing and sensitivity to future environmental stressors.
- Author
- Null, Dimova, Knee, Esser, Swarzenski, Singleton, Stacey, Paytan
- Title
- Observations of carbon export by small sinking particles in the upper mesopelagic
- Description
- Carbon and nutrients are transported out of the surface ocean and sequestered at depth by sinking particles. Sinking particle sizes span many orders of magnitude and the relative influence of small particles on carbon export compared to large particles has not been resolved. To determine the influence of particle size on carbon export, the flux of both small (11–64 μm) and large (> 64 μm) particles in the upper mesopelagic was examined during 5 cruises of the Bermuda Atlantic Time Series (BATS) in the Sargasso Sea using neutrally buoyant sediment traps mounted with tubes containing polyacrylamide gel layers and tubes containing a poisoned brine layer. Particles were also collected in surface-tethered, free-floating traps at higher carbon flux locations in the tropical and subtropical South Atlantic Ocean. Particle sizes spanning three orders of magnitude were resolved in gel samples, included sinking particles as small as 11 μm. At BATS, the number flux of small particles tended to increase with depth, whereas the number flux of large particles tended to decrease with depth. The carbon content of different sized particles could not be modeled by a single set of parameters because the particle composition varied across locations and over time. The modeled carbon flux by small particles at BATS, including all samples and depths, was 39 ± 20% of the modeled total carbon flux, and the percentage increased with depth in 4 out of the 5 months sampled. These results indicate that small particles (< 64 μm) are actively settling in the water column and are an important contributor to carbon flux throughout the mesopelagic. Observations and models that overlook these particles will underestimate the vertical flux of organic matter in the ocean., published
- Author
- Durkin, Estapa, Buesseler
- Title
- Heart rate regulation in diving sea lions: The vagus nerve rules
- Description
- Export Date: 8 May 2017, Review, Recent publications have emphasized the potential generation of morbid cardiac arrhythmias secondary to autonomic conflict in diving marine mammals. Such conflict, as typified by cardiovascular responses to cold water immersion in humans, has been proposed to result from exercise-related activation of cardiac sympathetic fibers to increase heart rate, combined with depth-related changes in parasympathetic tone to decrease heart rate. After reviewing the marine mammal literature and evaluating heart rate profiles of diving California sea lions (Zalophus californianus), we present an alternative interpretation of heart rate regulation that de-emphasizes the concept of autonomic conflict and the risk of morbid arrhythmias in marine mammals. We hypothesize that: (1) both the sympathetic cardiac accelerator fibers and the peripheral sympathetic vasomotor fibers are activated during dives even without exercise, and their activities are elevated at the lowest heart rates in a dive when vasoconstriction is maximal, (2) in diving animals, parasympathetic cardiac tone via the vagus nerve dominates over sympathetic cardiac tone during all phases of the dive, thus producing the bradycardia, (3) adjustment in vagal activity, which may be affected by many inputs, including exercise, is the primary regulator of heart rate and heart rate fluctuations during diving, and (4) heart beat fluctuations (benign arrhythmias) are common in marine mammals. Consistent with the literature and with these hypotheses, we believe that the generation of morbid arrhythmias because of exercise or stress during dives is unlikely in marine mammals
- Author
- Ponganis, McDonald, Tift, Williams
- Title
- Chitin in Diatoms and Its Association with the Cell Wall
- Description
- Chitin is a globally abundant polymer widely distributed throughout eukaryotes that has been well characterized in only a few lineages. Diatoms are members of the eukaryotic lineage of stramenopiles. Of the hundreds of diatom genera, two produce long fibers of chitin that extrude through their cell walls of silica. We identify and describe here genes encoding putative chitin synthases in a variety of additional diatom genera, indicating that the ability to produce chitin is more widespread and likely plays a more central role in diatom biology than previously considered. Diatom chitin synthases fall into four phylogenetic clades. Protein domain predictions and differential gene expression patterns provide evidence that chitin synthases have multiple functions within a diatom cell. Thalassiosira pseudonana possesses six genes encoding three types of chitin synthases. Transcript abundance of the gene encoding one of these chitin synthase types increases when cells resume division after short-term silicic acid starvation and during short-term limitation by silicic acid or iron, two nutrient conditions connected in the environment and known to affect the cell wall. During long-term silicic acid starvation transcript abundance of this gene and one additional chitin synthase gene increased at the same time a chitin-binding lectin localized to the girdle band region of the cell wall. Together, these results suggest that the ability to produce chitin is more widespread in diatoms than previously thought and that a subset of the chitin produced by diatoms is associated with the cell wall., published
- Author
- Durkin, Mock, Armbrust