Search results
(1 - 3 of 3)
- Title
- Complementarity in marine biodiversity manipulations: Reconciling divergent evidence from field and mesocosm experiments,
- Description
- Mounting concern over the loss of marine biodiversity has increased the urgency of understanding its consequences. This urgency spurred the publication of many short-term studies, which often report weak effects of diversity (species richness) driven by the presence of key species (the sampling effect). Longer-term field experiments are slowly accumulating, and they more often report strong diversity effects driven by species complementarity, calling into question the generality of earlier findings. However, differences among study systems in which short- and long-term studies are conducted currently limit our ability to assess whether these differences are simply due to biological or environmental differences among systems. In this paper, we compared the effect of intertidal seaweed species richness on biomass accumulation in mesocosms and field experiments using the same pool of species. We found that seaweed species richness increased biomass accumulation in field experiments in both short (2-month) and long (3-year) experiments, although effects were stronger in the longterm experiment. In contrast, richness had no effect in mesocosm experiments, where biomass accumulation was completely a function of species identity. We argue that the short-term experiments, like many published experiments on the topic, detect only a subset of possible mechanisms that operate in the field over the longer term because they lack sufficient environmental heterogeneity to allow expression of niche differences, and they are of insufficient length to capture population-level responses, such as recruitment. Many published experiments, therefore, likely underestimate the strength of diversity on ecosystem processes in natural ecosystems. © 2008 by The National Academy of Sciences of the USA., Cited By (since 1996):33 Seaweeds, CODEN: PNASA, ,
- Author
- Stachowicz, Best, Bracken, Graham
- Date
- 2008-01-01T00:00:00Z
- Title
- Plant-animal diversity relationships in a rocky intertidal system depend on invertebrate body size and algal cover
- Description
- Considerable research has examined the influence of herbivores on the maintenance of plant diversity, but fewer studies have examined the reciprocal effect of plant diversity on the animals that use the plant community for food and shelter, particularly in marine systems. Several mechanisms could underlie such effects. Animal diversity and abundance could be increased by complementary use of different plants by different animals, or by an indirect effect of plant diversity on plant production that results in more total plant biomass in high plant-diversity communities. Alternatively, plant species identity could play a dominant role leading to sampling effects or no effect of diversity at all. We conducted a sixyear field manipulation of the richness of rocky shore seaweeds in northern California and measured the effects of algal richness and identity on the invertebrate community, from meiofauna to macrofauna. We found that diverse algal communities hosted more species of both large and small invertebrates than the average algal monoculture but that the mechanisms underlying this pattern differed substantially for organisms of different size. More species of macrofauna occurred in the polycultures than in any of the monocultures, likely due to the greater total cover of algae produced in polycultures. Rare and common macrofaunal taxa responded to host plant species richness in opposite ways, with more occurrences of rare taxa and lower abundance of very common taxa in the polycultures. In contrast, meiofaunal richness in polycultures was no different than that of monocultures of finely branched species, leading to strong effects of algal identity. Our findings are similar to those from terrestrial systems in that the effects of plant diversity we observed were most related to the greater amount of habitat in polycultures as a result of overyielding in algal biomass. However, our findings differ from those in terrestrial systems in that the primary mechanisms for both richness and identity effects appear related to the value of plants as shelter from harsh abiotic conditions or predation rather than food, and in that animal body size altered the mechanisms underlying diversity effects. © 2014 by the Ecological Society of America.
- Author
- Best, Chaudoin, Bracken, Graham, Stachowicz
- Date
- 2014-01-01T00:00:00Z
- Title
- Diversity enhances cover and stability of seaweed assemblages: The role of heterogeneity and time,
- Description
- Generalizations regarding the mechanisms underlying the effects of plant diversity on ecosystem processes, and whether the patterns transcend study systems remain elusive. Many terrestrial plant diversity manipulations have found that plant biomass increases with diversity, but most marine studies find little or no effect of seaweed diversity on producer biomass or production. However, differences in experimental approach (field vs. mesocosm) and duration (years vs. weeks) between published terrestrial and marine experiments confound the interpretation of these differences in response to changing diversity. We conducted a three-year field manipulation of seaweed diversity on intertidal rocky reefs in central California, USA, to examine the effect of diversity on seaweed cover. We found that diversity increased standing algal cover and decreased the availability of free space relative to monocultures, but this effect took nine months to materialize. Furthermore, diverse assemblages did not consistently exceed the best performing monocultures until 18 months after the experiment was initiated, suggesting that the effect of diversity strengthens over time. Overall, diversity's effect was consistently stronger than that of individual species and not attributable to the influence of any particular species (sampling effect) because (1) polycultures eventually achieved higher cover than even the best performing monoculture and (2) monocultures rarely differed much, precluding a strong sampling effect. Instead, mechanisms such as facilitation and differential use of microhabitats in a heterogeneous environment likely caused the higher cover in polycultures. Our findings contrast with short-term experiments with other seaweeds but are similar to longer-term experiments with terrestrial plants, suggesting that experimental design and approach, rather than inherent differences between marine and terrestrial ecosystems, underlie contrasting responses among systems. We argue that experiments conducted in the field, and for a greater length of time, allow for the manifestation of a greater number of potential mechanisms of overyielding in diverse communities, increasing the likelihood of observing a strong diversity effect. © 2008 by the Ecological Society of America., Cited By (since 1996):38, Seaweeds, CODEN: ECOLA, ,
- Author
- Stachowicz, Graham, Bracken, Szoboszlai
- Date
- 2008-01-01T00:00:00Z