Search results
(1 - 5 of 5)
- Title
- California State Waters Map Series—Offshore of Pigeon Point, California
- Description
- In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.
- Author
- Cochrane, Watt, Dartnell, Greene, Erdey, Dieter, Golden, Johnson, Endris, Hartwell
- Title
- Digital Design Exercises for Architecture Students
- Author
- Johnson, Vermillion
- Title
- Cognitive control of heart rate in diving harbor porpoises
- Description
- Summary Marine mammals have adapted to forage while holding their breath in a suite of aquatic habitats from shallow rivers to deep oceans. The key to tolerate such extensive apnea is the dive response, which comprises bradycardia and peripheral vasoconstriction. Although initially considered an all-or-nothing reflex [1], numerous studies on freely diving marine mammals have revealed substantial dynamics of the dive response to meet the impending dive demands of depth, duration and exercise [2]. Such adjustments are not only autonomic responses, but are under acute cognitive control in pinnipeds [3] living amphibiously on land and in water. The fully aquatic cetaceans would similarly benefit from cognitive cardiovascular control; however, even though they have exercise-modulated diving bradycardia [2] and full voluntary control of their respiratory system to such extent that even mild anesthesia often leads to asphyxiation [4], cognitive cardiovascular control has never been demonstrated for this large group of marine mammals. To address this, we tested the hypothesis that porpoises modulate bradycardia according to anticipated dive duration. Two harbor porpoises, instrumented with ECG recording tags, were trained to perform 20- and 80-second stationary dives, during which they adjusted bradycardia to the anticipated duration, demonstrating cognitive control of their dive response.
- Author
- Elmegaard, Johnson, Madsen, McDonald
- Title
- An evaluation of ISFET sensors for coastal pH monitoring applications
- Description
- Abstract The accuracy and precision of ion sensitive field effect transistor (ISFET) pH sensors have been well documented, but primarily by ocean chemistry specialists employing the technology at single locations. Here we examine their performance in a network context through comparison to discrete measurements of pH, using different configurations of the Honeywell DuraFET pH sensor deployed in six coastal settings by operators with a range of experience. Experience of the operator had the largest effect on performance. The average difference between discrete and ISFET pH was 0.005 pH units, but ranged from −0.030 to 0.083 among operators, with more experienced operators within ± 0.02 pH units of the discrete measurement. In addition, experienced operators achieved a narrower range of variance in difference between discrete bottle measurements and ISFET sensor readings compared to novice operators and novice operators had a higher proportion of data failing quality control screening. There were no statistically significant differences in data uncertainty associated with sensor manufacturer or deployment environment (pier-mounted, flowthrough system, and buoy-mounted). The variation we observed among operators highlights the necessity of best practices and training when instruments are to be used in a network where comparison across data streams is desired. However, while opportunities remain for improving the performance of the ISFET sensors when deployed by less experienced operators, the uncertainty associated with their deployment and validation was several-fold less than the observed natural temporal variability in pH, demonstrating the utility of these sensors in tracking local changes in acidification.
- Author
- McLaughlin, Dickson, Weisberg, Coale, Elrod, Hunter, Johnson, Kram, Kudela, Martz, Negrey, Passow, Shaughnessy, Smith, Tadesse, Washburn, Weis
- Date
- 2017-04-01T00:00:00Z
- Title
- California State Waters Map Series—Offshore of Monterey, California
- Author
- Johnson, Dartnell, Hartwell, Cochrane, Golden, Watt, Davenport, Kvitek, Erdey, Krigsman